16 research outputs found

    Neutrosophic Hough Transform

    Get PDF
    Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images

    Deep convolutional neural networks for airport detection in remote sensing images

    No full text
    This study investigated the use of deep convolutional neural networks (CNNs) in providing a solution for the problem of airport detection in remote sensing images (RSIs). In recent years, Deep CNNs have gained much attention with numerous applications having been undertaken in the area of computer vision. Researchers generally approach airport detection as a pattern recognition problem, in which first various distinctive features are extracted, and then a classifier is adopted to detect airports. CNNs not only ensure a tuned feature vector, but also yield better classification accuracy. The method proposed in this study first detects various regions on RSIs and then uses these candidate regions to train CNN architecture. The CNN model used has five convolution and three fully connected layers. Normalization and dropout layers were employed in order to build efficient architecture. A data augmentation strategy was used to reduce overfitting. Several experiments were performed to evaluate the performance of CNNs. Comparative work validated the efficiency of the proposed method and yielded an accuracy of 95.21%

    A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images

    No full text
    A fundus image is an effective tool for ophthalmologists studying eye diseases. Retinal vessel detection is a significant task in the identification of retinal disease regions. This study presents a retinal vessel detection approach using shearlet transform and indeterminacy filtering. The fundus image’s green channel is mapped in the neutrosophic domain via shearlet transform. The neutrosophic domain images are then filtered with an indeterminacy filter to reduce the indeterminacy information. A neural network classifier is employed to identify the pixels whose inputs are the features in neutrosophic images. The proposed approach is tested on two datasets, and a receiver operating characteristic curve and the area under the curve are employed to evaluate experimental results quantitatively. The area under the curve values are 0.9476 and 0.9469 for each dataset respectively, and 0.9439 for both datasets. The comparison with the other algorithms also illustrates that the proposed method yields the highest evaluation measurement value and demonstrates the efficiency and accuracy of the proposed method

    Efficient Airport Detection Using Line Segment Detector and Fisher Vector Representation

    No full text
    In this letter, a two-stage method for airport detection on remote sensing images is proposed. In the first stage, a new algorithm composed of several line-based processing steps is used for extraction of candidate airport regions. In the second stage, the scale-invariant feature transformation and Fisher vector coding are used for efficient representation of the airport and nonairport regions and support vector machines employed for classification. In order to evaluate the performance of the proposed method, extensive experiments are conducted on airports around the world with different layouts. The measures used in the evaluation are accuracy, sensitivity, and specificity. The proposed method achieved an accuracy of 94.6%, which was benchmarked with two previous methods to prove its superiority

    Low level texture features for snore sound discrimination

    Get PDF

    Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals

    No full text
    Blood pressure is the pressure exerted by the blood in the veins against the walls of the veins. If this value is above normal levels, it is known as high blood pressure (HBP) or hypertension (HPT). This health problem which often referred to as the “silent killer” reduces the quality of life and causes severe damage to many body parts in various ways. Besides, its mortality rate is very high. Hence, rapid and effective diagnosis of this health problem is crucial. In this study, an automatic diagnosis of HPT has been proposed using ballistocardiography (BCG) signals. The BCG signals were transformed to the time-frequency domain using the spectrogram method. While creating the spectrogram images, parameters such as window type, window length, overlapping rate, and fast Fourier transform size were adjusted. Then, these images were classified using ConvMixer architecture, similar to vision transformers (ViT) and multi-layer perceptron (MLP)-mixer structures, which have attracted a lot of attention. Its performance was compared with classical architectures such as ResNet18 and ResNet50. The results obtained showed that the ConvMixer structure gave very successful results and a very short operation time. Our proposed model has obtained an accuracy of 98.14%, 98.79%, and 97.69% for the ResNet18, ResNet50, and ConvMixer architectures, respectively. In addition, it has been observed that the processing time of the ConvMixer architecture is relatively short compared to these two architectures

    A Simple and Effective Approach Based on a Multi-Level Feature Selection for Automated Parkinson’s Disease Detection

    No full text
    Parkinson’s disease (PD), which is a slowly progressing neurodegenerative disorder, negatively affects people’s daily lives. Early diagnosis is of great importance to minimize the effects of PD. One of the most important symptoms in the early diagnosis of PD disease is the monotony and distortion of speech. Artificial intelligence-based approaches can help specialists and physicians to automatically detect these disorders. In this study, a new and powerful approach based on multi-level feature selection was proposed to detect PD from features containing voice recordings of already-diagnosed cases. At the first level, feature selection was performed with the Chi-square and L1-Norm SVM algorithms (CLS). Then, the features that were extracted from these algorithms were combined to increase the representation power of the samples. At the last level, those samples that were highly distinctive from the combined feature set were selected with feature importance weights using the ReliefF algorithm. In the classification stage, popular classifiers such as KNN, SVM, and DT were used for machine learning, and the best performance was achieved with the KNN classifier. Moreover, the hyperparameters of the KNN classifier were selected with the Bayesian optimization algorithm, and the performance of the proposed approach was further improved. The proposed approach was evaluated using a 10-fold cross-validation technique on a dataset containing PD and normal classes, and a classification accuracy of 95.4% was achieved

    An Effective Hybrid Model for EEG-Based Drowsiness Detection

    No full text

    Silhouette Orientation Volumes for Efficient Fall Detection in Depth Videos

    No full text
    A novel method to detect human falls in depth videos is presented in this paper. A fast and robust shape sequence descriptor, namely the Silhouette Orientation Volume (SOV), is used to represent actions and classify falls. The SOV descriptor provides high classification accuracy even with a combination of simple associated models, such as Bag-of-Words and the Naive Bayes classifier. Experiments on the public SDU-Fall dataset show that this new approach achieves up to 91.89% fall detection accuracy with a single- view depth camera. The classification rate is about 5% higher than the results reported in the literature. An overall accuracy of 89.63% was obtained for the six-class action recognition, which is about 25% higher than the state of the art. Moreover, a perfect silhouette-based action recognition rate of 100% is achieved on the Weizmann action dataset

    Compact bilinear deep features for environmental sound recognition

    No full text
    corecore